A Framework for Geographic Object-based Image Analysis (geobia) Based on Geographic Ontology

نویسنده

  • H. Y. Gu
چکیده

GEOBIA (Geographic Object-Based Image Analysis) is not only a hot topic of current remote sensing and geographical research. It is believed to be a paradigm in remote sensing and GIScience. The lack of a systematic approach designed to conceptualize and formalize the class definitions makes GEOBIA a highly subjective and difficult method to reproduce. This paper aims to put forward a framework for GEOBIA based on geographic ontology theory, which could implement "Geographic entities Image objects Geographic objects" true reappearance. It consists of three steps, first, geographical entities are described by geographic ontology, second, semantic network model is built based on OWL(ontology web language),at last, geographical objects are classified with decision rule or other classifiers. A case study of farmland ontology was conducted for describing the framework. The strength of this framework is that it provides interpretation strategies and global framework for GEOBIA with the property of objective, overall, universal, universality, etc., which avoids inconsistencies caused by different experts’ experience and provides an objective model for mage analysis. * Corresponding author

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmarking the Applicability of Ontology in Geographic Object-Based Image Analysis

In Geographic Object-based Image Analysis (GEOBIA), identification of image objects is normally achieved using rule-based classification techniques supported by appropriate domain knowledge. However, GEOBIA currently lacks a systematic method to formalise the domain knowledge required for image object identification. Ontology provides a representation vocabulary for characterising domain-specif...

متن کامل

An Object-based Semantic Classification Method of High Resolution Satellite Imagery Using Ontology

Geographic Object-Based Image Analysis (GEOBIA) techniques have become increasingly popular in recent years and are able to incorporate and develop ontology model within the classification process. They have been claimed to represent a paradigm shift in remote sensing interpretation. Nevertheless, it is lack of formal expression and objective modelling of the whole process of GEOBIA, and lack o...

متن کامل

Environmental Object Recognition in a Natural Image: An Experimental Approach Using Geographic Object-Based Image Analysis (GEOBIA)

Natural images, which are filled with intriguing stimuli of spatial objects, represent our cognition and are rich in spatial information. Accurate extraction of spatial objects is challenging due to the associated spatial and spectral complexities in object recognition. In this paper, the authors tackle the problem of spatial object extraction in a GEOgraphic Object Based Image Analysis framewo...

متن کامل

From Pixels to Grixels: a Unified Functional Model for Geographic Object-based Image Analys

Geographic Object-Based Image Analysis (GEOBIA) aims to better exploit earth remotely sensed imagery by focusing on building image-objects resembling the real-world objects instead of using raw pixels as basis for classification. Due to the recentness of the field, concurrent and sometimes competing methods, terminology, and theoretical approaches are evolving. This risk of babelization has bee...

متن کامل

Ontology-Guided Image Interpretation for GEOBIA of High Spatial Resolution Remote Sense Imagery: A Coastal Area Case Study

Image interpretation is a major topic in the remote sensing community. With the increasing acquisition of high spatial resolution (HSR) remotely sensed images, incorporating geographic object-based image analysis (GEOBIA) is becoming an important sub-discipline for improving remote sensing applications. The idea of integrating the human ability to understand images inspires research related to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015